Affiliation:
1. School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
Abstract
The selective oxidation of toluene to yield value-added oxygenates, such as benzyl alcohol, benzaldehyde, and benzoic acid, via dioxygen presents a chlorine-free approach under benign conditions. Metal-free catalytic processes are preferred to avoid metal ion contamination. In this study, we employed N-hydroxyphthalimide (NHPI) as a catalyst for the aerobic oxidation of toluene to its oxygenated derivatives. The choice of solvent exerted a significant impact on the catalytic activity and selectivity of the catalyst NHPI at reaction temperatures exceeding 70 °C. Notably, hexafluoroisopropanol substantially enhanced the selective production of benzaldehyde. Furthermore, we identified didecyl dimethyl ammonium bromide, featuring two symmetrical long hydrophobic chains, as a potent enhancer of NHPI for the solvent-free aerobic oxidation of toluene. This effect is ascribed to its unique symmetrical structure, extraction capabilities, and resistance to thermal and acid/base conditions. Based on the product distribution and control experiments, we proposed a plausible reaction mechanism. These findings may inform the industrial synthesis of oxygenated derivatives from toluene.
Funder
Yangzhou Science and Technology Program Funds
Priority Academic Program Development of Jiangsu Higher Education Institutions