Electrochemical and Spectroscopic Characterization of Oxidized Intermediate Forms of Vitamin E

Author:

Webster Richard D.ORCID

Abstract

Vitamin E, a collection of lipophilic phenolic compounds based on chroman-6-ol, has a rich and fascinating oxidative chemistry involving a range of intermediate forms, some of which are proposed to be important in its biological functions. In this review, the available electrochemical and spectroscopic data on these oxidized intermediates are summarized, along with a discussion on how their lifetimes and chemical stability are either typical of similar phenolic and chroman-6-ol derived compounds, or atypical and unique to the specific oxidized isomeric form of vitamin E. The overall electrochemical oxidation mechanism for vitamin E can be summarized as involving the loss of two-electrons and one-proton, although the electron transfer and chemical steps can be controlled to progress along different pathways to prolong the lifetimes of discreet intermediates by modifying the experimental conditions (applied electrochemical potential, aqueous or non-aqueous solvent, and pH). Depending on the environment, the electrochemical reactions can involve single electron transfer (SET), proton-coupled electron transfer (PCET), as well as homogeneous disproportionation and comproportionation steps. The intermediate species produced via chemical or electrochemical oxidation include phenolates, phenol cation radicals, phenoxyl neutral radicals, dications, diamagnetic cations (phenoxeniums) and para–quinone methides. The cation radicals of all the tocopherols are atypically long-lived compared to the cation radicals of other phenols, due to their relatively weak acidity. The diamagnetic cation derived from α–tocopherol is exceptionally long-lived compared to the diamagnetic cations from the other β–, γ– and δ–isomers of vitamin E and compared with other phenoxenium cations derived from phenolic compounds. In contrast, the lifetime of the phenoxyl radical derived from α–tocopherol, which is considered to be critical in biological reactions, is typical for what is expected for a compound with its structural features. Over longer times via hydrolysis reactions, hydroxy para–quinone hemiketals and quinones can be formed from the oxidized intermediates, which can themselves undergo reduction processes to form intermediate anion radicals and dianions. Methods for generating the oxidized intermediates by chemical, photochemical and electrochemical methods are discussed, along with a summary of how the final products vary depending on the method used for oxidation. Since the intermediates mainly only survive in solution, they are most often monitored using UV-vis spectroscopy, FTIR or Raman spectroscopies, and EPR spectroscopy, with the spectroscopic techniques sometimes combined with fast photoinitiated excitation and time-resolved spectroscopy for detection of short-lived species.

Funder

Singapore Ministry of Education

National Research Foundation Singapore

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3