Magnetic Torus Microreactor as a Novel Device for Sample Treatment via Solid-Phase Microextraction Coupled to Graphite Furnace Atomic Absorption Spectroscopy: A Route for Arsenic Pre-Concentration

Author:

Ortegón Sofía,Peñaranda Paula Andrea,Rodríguez Cristian F.ORCID,Noguera Mabel JulianaORCID,Florez Sergio LeonardoORCID,Cruz Juan C.ORCID,Rivas Ricardo E.ORCID,Osma Johann F.ORCID

Abstract

This work studied the feasibility of using a novel microreactor based on torus geometry to carry out a sample pretreatment before its analysis by graphite furnace atomic absorption. The miniaturized retention of total arsenic was performed on the surface of a magnetic sorbent material consisting of 6 mg of magnetite (Fe3O4) confined in a very small space inside (20.1 µL) a polyacrylate device filling an internal lumen (inside space). Using this geometric design, a simulation theoretical study demonstrated a notable improvement in the analyte adsorption process on the solid extractant surface. Compared to single-layer geometries, the torus microreactor geometry brought on flow turbulence within the liquid along the curvatures inside the device channels, improving the efficiency of analyte–extractant contact and therefore leading to a high preconcentration factor. According to this design, the magnetic solid phase was held internally as a surface bed with the use of an 8 mm-diameter cylindric neodymium magnet, allowing the pass of a fixed volume of an arsenic aqueous standard solution. A preconcentration factor of up to 60 was found to reduce the typical “characteristic mass” (as sensitivity parameter) determined by direct measurement from 53.66 pg to 0.88 pg, showing an essential improvement in the arsenic signal sensitivity by absorption atomic spectrometry. This methodology emulates a miniaturized micro-solid-phase extraction system for flow-through water pretreatment samples in chemical analysis before coupling to techniques that employ reduced sample volumes, such as graphite furnace atomic absorption spectroscopy.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3