Advances in Mixer Design and Detection Methods for Kinetics Studies of Macromolecular Folding and Binding on the Microsecond Time Scale

Author:

Mizukami TakuyaORCID,Roder HeinrichORCID

Abstract

Many important biological processes such as protein folding and ligand binding are too fast to be fully resolved using conventional stopped-flow techniques. Although advances in mixer design and detection methods have provided access to the microsecond time regime, there is room for improvement in terms of temporal resolution and sensitivity. To address this need, we developed a continuous-flow mixing instrument with a dead time of 12 to 27 µs (depending on solution viscosity) and enhanced sensitivity, sufficient for monitoring tryptophan or tyrosine fluorescence changes at fluorophore concentrations as low as 1 µM. Relying on commercially available laser microfabrication services, we obtained an integrated mixer/flow-cell assembly on a quartz chip, based on a cross-channel configuration with channel dimensions and geometry designed to minimize backpressure. By gradually increasing the width of the observation channel downstream from the mixing region, we are able to monitor a reaction progress time window ranging from ~10 µs out to ~3 ms. By combining a solid-state UV laser with a Galvano-mirror scanning strategy, we achieved highly efficient and uniform fluorescence excitation along the flow channel. Examples of applications, including refolding of acid-denatured cytochrome c triggered by a pH jump and binding of a peptide ligand to a PDZ domain, demonstrate the capability of the technique to resolve fluorescence changes down to the 10 µs time regime on modest amounts of reagents.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3