Cholesterol Conjugates of Small Interfering RNA: Linkers and Patterns of Modification

Author:

Chernikov Ivan V.1ORCID,Ponomareva Ul’yana A.1,Meschaninova Mariya I.1ORCID,Bachkova Irina K.12,Vlassov Valentin V.1,Zenkova Marina A.1ORCID,Chernolovskaya Elena L.1ORCID

Affiliation:

1. Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Academic Lavrentiev Avenue 8, 630090 Novosibirsk, Russia

2. Faculty of Natural Sciences, Novosibirsk State University, Pirogova Str. 1, 630090 Novosibirsk, Russia

Abstract

Cholesterol siRNA conjugates attract attention because they allow the delivery of siRNA into cells without the use of transfection agents. In this study, we compared the efficacy and duration of silencing induced by cholesterol conjugates of selectively and totally modified siRNAs and their heteroduplexes of the same sequence and explored the impact of linker length between the 3′ end of the sense strand of siRNA and cholesterol on the silencing activity of “light” and “heavy” modified siRNAs. All 3′-cholesterol conjugates were equally active under transfection, but the conjugate with a C3 linker was less active than those with longer linkers (C8 and C15) in a carrier-free mode. At the same time, they were significantly inferior in activity to the 5′-cholesterol conjugate. Shortening the sense strand carrying cholesterol by two nucleotides from the 3′-end did not have a significant effect on the activity of the conjugate. Replacing the antisense strand or both strands with fully modified ones had a significant effect on silencing as well as improving the duration in transfection-mediated and carrier-free modes. A significant 78% suppression of MDR1 gene expression in KB-8-5 xenograft tumors developed in mice promises an advantage from the use of fully modified siRNA cholesterol conjugates in combination chemotherapy.

Funder

Russian Science Foundation

project ICBFM SB RAS

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3