Enhanced Toxicity of Bisphenols Together with UV Filters in Water: Identification of Synergy and Antagonism in Three-Component Mixtures

Author:

Kudłak BłażejORCID,Jatkowska Natalia,Liu Wen,Williams Michael J.,Barcelo DamiaORCID,Schiöth Helgi B.

Abstract

Contaminants of emerging concern (CEC) localize in the biome in variable combinations of complex mixtures that are often environmentally persistent, bioaccumulate and biomagnify, prompting a need for extensive monitoring. Many cosmetics include UV filters that are listed as CECs, such as benzophenone derivatives (oxybenzone, OXYB), cinnamates (2-ethylhexyl 4-methoxycinnamate, EMC) and camphor derivatives (4-methylbenzylidene-camphor, 4MBC). Furthermore, in numerous water sources, these UV filters have been detected together with Bisphenols (BPs), which are commonly used in plastics and can be physiologically detrimental. We utilized bioluminescent bacteria (Microtox assay) to monitor these CEC mixtures at environmentally relevant doses, and performed the first systematic study involving three sunscreen components (OXYB, 4MBC and EMC) and three BPs (BPA, BPS or BPF). Moreover, a breast cell line and cell viability assay were employed to determine the possible effect of these mixtures on human cells. Toxicity modeling, with concentration addition (CA) and independent action (IA) approaches, was performed, followed by data interpretation using Model Deviation Ratio (MDR) evaluation. The results show that UV filter sunscreen constituents and BPs interact at environmentally relevant concentrations. Of notable interest, mixtures containing any pair of three BPs (e.g., BPA + BPS, BPA + BPF and BPS + BPF), together with one sunscreen component (OXYB, 4MBC or EMC), showed strong synergy or overadditive effects. On the other hand, mixtures containing two UV filters (any pair of OXYB, 4MBC and EMC) and one BP (BPA, BPS or BPF) had a strong propensity towards concentration dependent underestimation. The three-component mixtures of UV filters (4MBC, EMC and OXYB) acted in an antagonistic manner toward each other, which was confirmed using a human cell line model. This study is one of the most comprehensive involving sunscreen constituents and BPs in complex mixtures, and provides new insights into potentially important interactions between these compounds.

Funder

Gdańsk University of Technology

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3