Anti-Depressive Effectiveness of Baicalin In Vitro and In Vivo

Author:

Liu Li,Dong Yu,Shan Xin,Li Lin,Xia Baomei,Wang Hanqing

Abstract

Baicalin (BA), a major polyphenol compound isolated from the extracts of Scutellaria radix, has been previously reported to ameliorate depressive-like behaviors in mice with chronic unpredictable mild stress (CUMS). However, its underlying antidepressant mechanisms remain unclear. This study was designed to confirm the antidepressant-like effects of BA on CUMS induced behavioral abnormalities in mice, and sought to explore the pharmacological mechanisms in vivo and in vitro. The CUMS procedure was carried out to induce depression in mice. Afterwards, the tail suspension test (TST), forced swim test (FST), and open field test (OFT) were performed within 24 h, then sucrose preference test (SPT) was conducted. Additionally, PC12 cells were pretreated with BA for 2 h, then further stimulated with corticosterone for 24 h. The levels of Interleukin-1β (IL-1β), IL-6 and Tumor Necrosis Factor-α (TNF-α) in serum, hippocampus homogenate and cell culture medium were determined using the enzyme-linked immunosorbent assay (ELISA) method. The protein expressions of inhibition of high mobility group box 1 protein (HMGB1)/Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) pathways in hippocampus and PC12 cells were detected. Our results showed that CUMS-treated mice presented notable depressive-like symptoms, such as decreased sucrose consumption, increased FST and TST immobility time. While BA (25, 50 mg/kg) significantly attenuated these changes. Besides, BA treatment considerably inhibited inflammatory cytokinesl (IL-1β, IL-6, TNF-α) levels in serum, hippocampus homogenate and cell culture medium. Western blot analysis indicated that BA inhibited the expressions of HMGB1, TLR4, and p-NF-κBp65 both in vivo and in vitro. In conclusion, the present study confirmed that BA possessed efficient antidepressant effects on depression, which was possibly related to the inhibition of HMGB1/TLR4/NF-κB pathways.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3