Author:
Prodhan Suryoday,Mazumdar Sumit,Ramasesha S.
Abstract
We report studies of the correlated excited states of coronene and substituted coronene within the Pariser–Parr–Pople (PPP) correlated
π
-electron model employing the symmetry-adapted density matrix renormalization group technique. These polynuclear aromatic hydrocarbons can be considered as graphene nanoflakes. We review their electronic structures utilizing a new symmetry adaptation scheme that exploits electron-hole symmetry, spin-inversion symmetry, and end-to-end interchange symmetry. The study of the electronic structures sheds light on the electron correlation effects in these finite-size graphene analogues, which diminishes going from one-dimensional to higher-dimensional systems, yet is significant within these finite graphene derivatives.
Funder
National Science Foundation
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献