Phosphorus Modified Cardanol: A Greener Route to Reduce VolaTile Organic Compounds and Impart Flame Retardant Properties to Alkyd Resin Coatings

Author:

Denis MaxinneORCID,Le Borgne DamienORCID,Sonnier RodolpheORCID,Caillol SylvainORCID,Totee Cédric,Negrell Claire

Abstract

Novel phosphorylated cardanol molecules based on phosphonate (PO3CR) and phosphate (PO4CR) functions were synthetized. Those molecules have two main actions which are described in this article: the reduction in volatile organic compounds (VOC) and the development of flame retardant (FR) properties conferred on alkyd resins used as coatings for wood specimen. Phosphorylated cardanol compounds have been successfully grafted by covalent bonds to alkyd resins thanks to an auto-oxidative reaction. The impact of the introduction of PO3CR and PO4CR on the film properties such as drying time and flexibility has been studied and the thermal and flame retardant properties through differential scanning calorimeter, thermogravimetric analysis and pyrolysis-combustion flow calorimeter. These studies underscored an increase in the thermal stability and FR properties of the alkyd resins. In the cone calorimeter test, the lowest pHRR was obtained with 3 wt% P of phosphate-cardanol and exhibited a value of 170 KW.m−2, which represented a decrease of almost 46% compared to the POxCR-free alkyd resins. Moreover, a difference in the mode of action between phosphonate and phosphate compounds has been highlighted. The most effective coating which combined excellent FR properties and good coating properties has been obtained with 2 wt% P of phosphate-cardanol. Indeed, the film properties were closed to the POxCR-free alkyd resin and the pHRR decreased by 41% compared to the reference alkyd resin.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3