In Situ N, O Co-Doped Nanoporous Carbon Derived from Mixed Egg and Rice Waste as Green Supercapacitor

Author:

Qin Shumeng1,Liu Peiliang1,Wang Jieni12,Liu Chenxiao12,Zhang Shuqin12,Tian Yijun12,Zhang Fangfang12,Wang Lin1ORCID,Cao Leichang12,Zhang Jinglai2ORCID,Zhang Shicheng3ORCID

Affiliation:

1. Miami College, Henan University, Kaifeng 475004, China

2. College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China

3. Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China

Abstract

The conversion of nitrogen–oxygen-rich biomass wastes into heteroatomic co-doped nanostructured carbons used as energy storage materials has received widespread attention. In this study, an in situ nitrogen–oxygen co-doped porous carbon was prepared for supercapacitor applications via a two-step method of pre-carbonization and pyrolytic activation using mixed egg yolk/white and rice waste. The optimal sample (YPAC-1) was found to have a 3D honeycomb structure composed of abundant micropores and mesopores with a high specific surface area of 1572.1 m2 g−1, which provided abundant storage space and a wide transport path for electrolyte ions. Notably, the specific capacitance of the constructed three-electrode system was as high as 446.22 F g−1 at a current density of 1 A g−1 and remained above 50% at 10 A g−1. The capacitance retention was 82.26% after up to 10,000 cycles. The symmetrical capacitor based on YPAC-1 with a two-electrode structure exhibited an energy density of 8.3 Wh kg−1 when the power density was 136 W kg−1. These results indicate that porous carbon materials prepared from mixed protein and carbohydrate waste have promising applications in the field of supercapacitors.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Key Scientific Research Projects of Universities in Henan Province

Key Science and Technology Department Project of Henan Province

Science and Technology Development Plan of Kaifeng City–Science and Technology Research Project

Yellow River and Yellow River Scholar Program of Henan University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3