Design, Synthesis, and Antiproliferative Activity of New 5-Chloro-indole-2-carboxylate and Pyrrolo[3,4-b]indol-3-one Derivatives as Potent Inhibitors of EGFRT790M/BRAFV600E Pathways

Author:

Al-Wahaibi Lamya H.1,Mohammed Anber F.2ORCID,Abdelrahman Mostafa H.3,Trembleau Laurent4,Youssif Bahaa G. M.2ORCID

Affiliation:

1. Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia

2. Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt

3. Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt

4. School of Natural and Computing Sciences, University of Aberdeen, Meston Building, Aberdeen AB24 3UE, UK

Abstract

Mutant EGFR/BRAF pathways are thought to be crucial targets for the development of anticancer drugs since they are over-activated in several malignancies. We present here the development of a novel series of 5-chloro-indole-2-carboxylate 3a–e, 4a–c and pyrrolo[3,4-b]indol-3-ones 5a–c derivatives as potent inhibitors of mutant EGFR/BRAF pathways with antiproliferative activity. The cell viability assay results of 3a–e, 4a–c, and 5a–c revealed that none of the compounds tested were cytotoxic, and that the majority of those tested at 50 µM had cell viability levels greater than 87%. Compounds 3a–e, 4a–c, and 5a–c had significant antiproliferative activity with GI50 values ranging from 29 nM to 78 nM, with 3a–e outperforming 4a–c and 5a–c in their inhibitory actions against the tested cancer cell lines. Compounds 3a–e were tested for EGFR inhibition, with IC50 values ranging from 68 nM to 89 nM. The most potent derivative was found to be the m-piperidinyl derivative 3e (R = m-piperidin-1-yl), with an IC50 value of 68 nM, which was 1.2-fold more potent than erlotinib (IC50 = 80 nM). Interestingly, all the tested compounds 3a–e had higher anti-BRAFV600E activity than the reference erlotinib but were less potent than vemurafenib, with compound 3e having the most potent activity. Moreover, compounds 3b and 3e showed an 8-fold selectivity index toward EGFRT790M protein over wild-type. Additionally, molecular docking of 3a and 3b against BRAFV600E and EGFRT790M enzymes revealed high binding affinity and active site interactions compared to the co-crystalized ligands. The pharmacokinetics properties (ADME) of 3a–e revealed safety and good pharmacokinetic profile.

Funder

Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3