Identification of Antidiabetic Compounds from the Aqueous Extract of Sclerocarya birrea Leaves

Author:

Maharaj VineshORCID,Ezeofor Chidinma Christiana,Naidoo Maharaj DashnieORCID,Muller Christo J. F.ORCID,Obonye Nnini Jennifer

Abstract

Diabetes, a prevalent metabolic condition with a wide range of complications, is fast becoming a global health crisis. Herbal medicine and enhanced extracts are some of the therapeutic options used in the management of diabetes mellitus. The plant-derived molecules and their suitable structure modification have given many leads or drugs to the world such as metformin used as an antidiabetic drug. The stem extract of Sclerocarya birrea has been reported as a potent antidiabetic (glucose uptake) agent. However, the bioactive compounds have not been reported from S. birrea for treatment of diabetes. In this study, the spray-dried aqueous leaf extracts of S. birrea were investigated as an antidiabetic agent using a 2-deoxy-glucose (2DG) technique showing good stimulatory effect on glucose uptake in differentiated C2C12 myocytes with % 2DG uptake ranging from 110–180% that was comparable to the positive control insulin. Three compounds were isolated and identified using bioassay-guided fractionation of the spray-dried aqueous extract of S. birrea leaves: myricetin (1), myricetin-3-O-β-D-glucuronide (2) and quercetin-3-O-β-D-glucuronide (3). Their chemical structures were determined using NMR and mass spectrometric analyses, as well as a comparison of experimentally obtained data to those reported in the literature. The isolated compounds (1–3) were studied for their stimulatory actions on glucose uptake in differentiated C2C12 myocytes. The three compounds (1, 2 and 3) showed stimulatory effects on the uptake of 2DG in C2C12 myocytes with % 2DG uptake ranging from 43.9–109.1% that was better compared to the positive control insulin. Additionally, this is the first report of the flavonoid glycosides (myricetin-3-O-β-D-glucuronide) for antidiabetic activity and they are the main bioactive compound in the extract responsible for the antidiabetic activity. This result suggests that the S. birrea leaves have the potential to be developed for treatment of diabetes.

Funder

Department of Science and Innovation, South Africa, University of KwaZulu-Natal

Biomedical Research and Innovation Platform, South African Medical Research Council

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3