Implementation of Bismuth Chalcogenides as an Efficient Anode: A Journey from Conventional Liquid Electrolyte to an All-Solid-State Li-Ion Battery

Author:

Singh RiniORCID,Kumari Pooja,Kumar Manoj,Ichikawa Takayuki,Jain AnkurORCID

Abstract

Bismuth chalcogenide (Bi2X3; X = sulfur (S), selenium (Se), and tellurium (Te)) materials are considered as promising materials for diverse applications due to their unique properties. Their narrow bandgap, good thermal conductivity, and environmental friendliness make them suitable candidates for thermoelectric applications, photodetector, sensors along with a wide array of energy storage applications. More specifically, their unique layered structure allows them to intercalate Li+ ions and further provide conducting channels for transport. This property makes these suitable anodes for Li-ion batteries. However, low conductivity and high-volume expansion cause the poor electrochemical cyclability, thus creating a bottleneck to the implementation of these for practical use. Tremendous endeavors have been devoted towards the enhancement of cyclability of these materials, including nanostructuring and the incorporation of a carbon framework matrix to immobilize the nanostructures to prevent agglomeration. Apart from all these techniques to improve the anode properties of Bi2X3 materials, a step towards all-solid-state lithium-ion batteries using Bi2X3-based anodes has also been proven as a key approach for next-generation batteries. This review article highlights the main issues and recent advances associated with Bi2X3 anodes using both solid and liquid electrolytes.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3