Thermochemical Activity of Single- and Dual-Phase Oxide Compounds Based on Ceria, Ferrites, and Perovskites for Two-Step Synthetic Fuel Production

Author:

Le Gal Alex1,Julbe Anne2ORCID,Abanades Stéphane1ORCID

Affiliation:

1. Processes, Materials and Solar Energy Laboratory (PROMES-CNRS), 7 Rue du Four Solaire, 66120 Odeillo Font-Romeu, France

2. Institut Européen des Membranes (IEM), CNRS, ENSCM, University of Montpellier, Place Eugène Bataillon, 34095 Montpellier, France

Abstract

This study focuses on the generation of solar thermochemical fuel (hydrogen, syngas) from CO2 and H2O molecules via two-step thermochemical cycles involving intermediate oxygen-carrier redox materials. Different classes of redox-active compounds based on ferrite, fluorite, and perovskite oxide structures are investigated, including their synthesis and characterization associated with experimental performance assessment in two-step redox cycles. Their redox activity is investigated by focusing on their ability to perform the splitting of CO2 during thermochemical cycles while quantifying fuel yields, production rates, and performance stability. The shaping of materials as reticulated foam structures is then evaluated to highlight the effect of morphology on reactivity. A series of single-phase materials including spinel ferrite, fluorite, and perovskite formulations are first investigated and compared to state-of-the-art materials. NiFe2O4 foam exhibits a CO2-splitting activity similar to its powder analog after reduction at 1400 °C, surpassing the performance of ceria but with much slower oxidation kinetics. On the other hand, although identified as high-performing materials in other studies, Ce0.9Fe0.1O2, Ca0.5Ce0.5MnO3, Ce0.2Sr1.8MnO4, and Sm0.6Ca0.4Mn0.8Al0.2O3 are not found to be attractive candidates in this work (compared with La0.5Sr0.5Mn0.9Mg0.1O3). In the second part, characterizations and performance evaluation of dual-phase materials (ceria/ferrite and ceria/perovskite composites) are performed and compared to single-phase materials to assess a potential synergistic effect on fuel production. The ceria/ferrite composite does not provide any enhanced redox activity. In contrast, ceria/perovskite dual-phase compounds in the form of powders and foams are found to enhance the CO2-splitting performance compared to ceria.

Funder

H2VERT project

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference49 articles.

1. Energy requirements in the production of hydrogen from water;Funk;Ind. Eng. Chem. Process Des. Dev.,1966

2. Water splitting for hydrogen production with ferrites;Han;Sol. Energy,2007

3. Solar hydrogen production by two-step thermochemical cycles: Evaluation of the activity of commercial ferrites;Fresno;Int. J. Hydrogen Energy,2009

4. Thermochemical two-step water splitting by ZrO2-supported NixFe3−xO4 for solar hydrogen production;Kodama;Sol. Energy,2008

5. Jung, Y., Oh, S., Han, G., Chen, K., and Seo, T. (2010, January 21–24). Dish type solar thermal system for hydrogen production with two-step water-splitting reaction. Proceedings of the Solar Paces Conference, Perpignan, France.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3