Multiple Technology Approach Based on Stable Isotope Ratio Analysis, Fourier Transform Infrared Spectrometry and Thermogravimetric Analysis to Ensure the Fungal Origin of the Chitosan

Author:

Claverie Elodie1,Perini Matteo2ORCID,Onderwater Rob C. A.1,Pianezze Silvia2ORCID,Larcher Roberto2,Roosa Stéphanie1,Yada Bopha1,Wattiez Ruddy3

Affiliation:

1. MateriaNova ASBL, Avenue Nicolas Copernic 3, 7000 Mons, Belgium

2. Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy

3. Proteomics and Microbiology Department, University of Mons, Avenue du Champ de Mars 6, 7000 Mons, Belgium

Abstract

Chitosan is a natural polysaccharide which has been authorized for oenological practices for the treatment of musts and wines. This authorization is limited to chitosan of fungal origin while that of crustacean origin is prohibited. To guarantee its origin, a method based on the measurement of the stable isotope ratios (SIR) of carbon δ13C, nitrogen δ15N, oxygen δ18O and hydrogen δ2H of chitosan has been recently proposed without indicating the threshold authenticity limits of these parameters which, for the first time, were estimated in this paper. In addition, on part of the samples analysed through SIR, Fourier transform infrared spectrometry (FTIR) and thermogravimetric analysis (TGA) were performed as simple and rapid discrimination methods due to limited technological resources. Samples having δ13C values above −14.2‰ and below −125.1‰ can be considered as authentic fungal chitosan without needing to analyse other parameters. If the δ13C value falls between −25.1‰ and −24.9‰, it is necessary to proceed further with the evaluation of the parameter δ15N, which must be above +2.7‰. Samples having δ18O values lower than +25.3‰ can be considered as authentic fungal chitosan. The combination of maximum degradation temperatures (obtained using TGA) and peak areas of Amide I and NH2/Amide II (obtained using FTIR) also allows the discrimination between the two origins of the polysaccharide. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) based on TGA, FTIR and SIR data successfully distributed the tested samples into informative clusters. Therefore, we present the technologies described as part of a robust analytical strategy for the correct identification of chitosan samples from crustaceans or fungi.

Funder

Service Public de Wallonie

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3