Volatile Organic Compound Profiles of Cystoseira corniculata (Turner) Zanardini 1841 and Ericaria amentacea (C.Agardh) Molinari and Guiry 2020 (ex. Cystoseira amentacea (C.Agardh) Bory de Saint-Vincent, 1832)

Author:

Radman SanjaORCID,Jerković IgorORCID

Abstract

The volatile organic compounds (VOCs) of fresh (FrCC) and air-dried (DrCC) Cystoseria corniculata and fresh (FrEA) and air-dried (DrEA) Ericaria amentacea from the Adriatic Sea were investigated by headspace solid-phase microextraction (HS-SPME) and hydrodistillation (HD) and analysed by gas chromatography and mass spectrometry (GC-MS). In HS-FrCC and HS-DrCC, aliphatic compounds were dominant, with decan-5-ol as the most abundant in HS-FrCC, but in HS-DrCC pentadecane dominated. Monoterpenes (β-cyclocitral, β-citral, and β-cyclohomocitral) and sesquiterpenes (cubenol) were abundant in HS-FrCC. Notable differences between fresh and air-dried samples were found for benzene derivatives. Fatty acids and their derivatives were the most abundant in HD-FrCC and HD-DrCC. In HS-FrEA and HS-DrEA, saturated aliphatic compounds as well as unsaturated aliphatic compounds (particularly hexan-1-ol and (Z)-hex-3-en-1-ol) predominantly showed decrements after drying. Pentadecane, heptadecane, pentadecanal, and hexan-1-ol were predominant in HD-FrEA, and their percentage decreased in HD-DrEA. The percentage of monoterpenes decreased after drying, but the percentages of diterpenes and especially sesquiterpenes increased. δ-Selinene was the major terpene and the most abundant in HD-DrEA. A significant increment after drying could be noticed for fatty acids and their derivatives. The great diversity of identified VOCs among these two macroalgae supports their different botanical classifications.

Funder

Croatian Government

European Union

European Regional Development Fund

Scientific Centre of Excellence for Marine Bioprospecting—BioProCro

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3