Orientation Matters: Polarization Dependent IR Spectroscopy of Collagen from Intact Tendon Down to the Single Fibril Level

Author:

Bakir GorkemORCID,Girouard Benoit E.,Wiens Richard,Mastel Stefan,Dillon Eoghan,Kansiz Mustafa,Gough Kathleen M.

Abstract

Infrared (IR) spectroscopy has been used for decades to study collagen in mammalian tissues. While many changes in the spectral profiles appear under polarized IR light, the absorption bands are naturally broad because of tissue heterogeneity. A better understanding of the spectra of ordered collagen will aid in the evaluation of disorder in damaged collagen and in scar tissue. To that end, collagen spectra have been acquired with polarized far-field (FF) Fourier Transform Infrared (FTIR) imaging with a Focal Plane Array detector, with the relatively new method of FF optical photothermal IR (O-PTIR), and with nano-FTIR spectroscopy based on scattering-type scanning near-field optical microscopy (s-SNOM). The FF methods were applied to sections of intact tendon with fibers aligned parallel and perpendicular to the polarized light. The O-PTIR and nano-FTIR methods were applied to individual fibrils of 100–500 nm diameter, yielding the first confirmatory and complementary results on a biopolymer. We observed that the Amide I and II bands from the fibrils were narrower than those from the intact tendon, and that both relative intensities and band shapes were altered. These spectra represent reliable profiles for normal collagen type I fibrils of this dimension, under polarized IR light, and can serve as a benchmark for the study of collagenous tissues.

Funder

Natural Sciences and Engineering Research Council of Canada

University of Manitoba

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3