Recent Progress in Silicon−Based Materials for Performance−Enhanced Lithium−Ion Batteries

Author:

Kong Xiangzhong12,Xi Ziyang12,Wang Linqing12,Zhou Yuheng12,Liu Yong12,Wang Lihua12,Li Shi12,Chen Xi12ORCID,Wan Zhongmin12

Affiliation:

1. Hunan Institute of Science and Technology, College of Mechanical Engineering, Yueyang 414006, China

2. Hunan Institute of Science and Technology, Institute of New Energy, Yueyang 414006, China

Abstract

Silicon (Si) has been considered to be one of the most promising anode materials for high energy density lithium−ion batteries (LIBs) due to its high theoretical capacity, low discharge platform, abundant raw materials and environmental friendliness. However, the large volume changes, unstable solid electrolyte interphase (SEI) formation during cycling and intrinsic low conductivity of Si hinder its practical applications. Various modification strategies have been widely developed to enhance the lithium storage properties of Si−based anodes, including cycling stability and rate capabilities. In this review, recent modification methods to suppress structural collapse and electric conductivity are summarized in terms of structural design, oxide complexing and Si alloys, etc. Moreover, other performance enhancement factors, such as pre−lithiation, surface engineering and binders are briefly discussed. The mechanisms behind the performance enhancement of various Si−based composites characterized by in/ex situ techniques are also reviewed. Finally, we briefly highlight the existing challenges and future development prospects of Si−based anode materials.

Funder

National Natural Science Foundation of China

Excellent Youth Foundation of Hunan Province Scientific Committee

Science and Technology Innovation Program of Hunan Province

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3