Design, Synthesis, Molecular Docking, and Evaluation Antioxidant and Antimicrobial Activities for Novel 3-Phenylimidazolidin-4-One and 2-Aminothiazol-4-One Derivatives

Author:

Shehab WesamORCID,Aziz MagedORCID,Elhoseni Nourhan,Assy Mohamed,Abdellattif MagdaORCID,Hamed Eman

Abstract

On our way to discovering and developing compounds that have an antioxidant impact compared to ascorbic acid and other biological activities, we designed, synthesized, and evaluated a new series of heterocyclic moieties drugs (1–11) as antioxidants and antimicrobial agents. As starting moieties, these new candidates were derived from two promising heterocyclic compounds, imidazoldin-4-one and thiazol-4-one. Firstly, diphenylimidazol 1 was obtained because of the cyclo condensation one-pot ternary reaction of urea, aniline, and chloroacetic acid under thermal conditions. Out of this starting compound, we could design and create new vital rings such as purine and triazine as in compounds 5 and 6, respectively. Secondly, the start thiazole derivative 7 was obtained from the intermolecular cyclization of thiourea, chloroacetic acid, p-nitobezaldehyde in the presence of sodium acetate. We synthesized various derivatives from this second starting compound 7 by being subjected to different reagents such as aniline, phenylenediamine, phenylhydrazine, and barbituric acid to yield 8, 9, 10, and 11, respectively. Using ascorbic acid as the standard compound, the pharmacological testing for antioxidant activity assessment of the produced derivatives was evaluated against ABTS (2,20-azinobis (3-ethylbenzothiazoline-6-sulfonic acid). Candidate 6 exhibited the best activity as an antioxidant agent compared to ascorbic acid as a reference compound. Moreover, all compounds were evaluated as antimicrobial agents against a series of bacteria and fungi. Among all synthesized compounds, compound 6 achieved high efficiency against two types of fungi and four kinds of bacteria, as Clotrimazole and Ampicillin were used as the reference agents, respectively. All chemical structures of the novel synthesized candidates were unequivocally elucidated and confirmed utilizing spectroscopical and elemental investigations.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3