Efficient One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones via a Three-Component Biginelli Reaction

Author:

Bosica GiovannaORCID,Cachia Fiona,De Nittis Riccardo,Mariotti Nicole

Abstract

Multicomponent reactions are considered to be of increasing importance as time progresses due to the economic and environmental advantages such strategies entail. The three-component Biginelli reaction involves the combination of an aldehyde, a β-ketoester and urea to produce 3,4-dihydropyrimidin-2(1H)-ones, also known as DHPMs. The synthesis of these products is highly important due to their myriad of medicinal properties, amongst them acting as calcium channel blockers and antihypertensive and anti-inflammatory agents. In this study, silicotungstic acid supported on Ambelyst-15 was used as a heterogeneous catalyst for the Biginelli reaction under solventless conditions. Electron-poor aromatic aldehydes gave the best results. Sterically hindered β-ketoesters resulted in lower reaction yields. The reaction was carried out under heterogeneous catalysis to allow easy recovery of the product from the reaction mixture and recycling of the catalyst. The heterogeneity of the reaction was confirmed by carrying out a hot filtration test.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference41 articles.

1. Past, present and future of the Biginelli reaction: A critical perspective;Sandhu;ChemInform,2012

2. Recent developments in the synthesis and applications of dihydropyrimidin-2(1H)-ones and thiones

3. Biological activity of dihydropyrimidinone (DHPM) derivatives: A systematic review;Santana;Eur. J. Med. Chem.,2018

4. A Mini Review: Biginelli Reaction for the Synthesis of Dihydropyrimidinones;Anjaneyulu;Int. J. Eng. Technol. Res.,2015

5. What do we know about multicomponent reactions? Mechanisms and trends for the Biginelli, Hantzsch, Mannich, Passerini and Ugi MCRs

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3