Protein–Protein Interactions in Translesion Synthesis

Author:

Dash Radha CharanORCID,Hadden KyleORCID

Abstract

Translesion synthesis (TLS) is an error-prone DNA damage tolerance mechanism used by actively replicating cells to copy past DNA lesions and extend the primer strand. TLS ensures that cells continue replication in the presence of damaged DNA bases, albeit at the expense of an increased mutation rate. Recent studies have demonstrated a clear role for TLS in rescuing cancer cells treated with first-line genotoxic agents by allowing them to replicate and survive in the presence of chemotherapy-induced DNA lesions. The importance of TLS in both the initial response to chemotherapy and the long-term development of acquired resistance has allowed it to emerge as an interesting target for small molecule drug discovery. Proper TLS function is a complicated process involving a heteroprotein complex that mediates multiple attachment and switching steps through several protein–protein interactions (PPIs). In this review, we briefly describe the importance of TLS in cancer and provide an in-depth analysis of key TLS PPIs, focusing on key structural features at the PPI interface while also exploring the potential druggability of each key PPI.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3