Exploring the Chemical Space of CYP17A1 Inhibitors Using Cheminformatics and Machine Learning

Author:

Yu Tianshi12,Huang Tianyang1,Yu Leiye3,Nantasenamat Chanin4ORCID,Anuwongcharoen Nuttapat2ORCID,Piacham Theeraphon5ORCID,Ren Ruobing36ORCID,Chiang Ying-Chih1ORCID

Affiliation:

1. Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China

2. Center of Data Mining and Biomedical informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand

3. Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China

4. Streamlit Open Source, Snowflake Inc., San Mateo, CA 94402, USA

5. Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand

6. Shanghai Qi Zhi Institute, Shanghai 200030, China

Abstract

Cytochrome P450 17A1 (CYP17A1) is one of the key enzymes in steroidogenesis that produces dehydroepiandrosterone (DHEA) from cholesterol. Abnormal DHEA production may lead to the progression of severe diseases, such as prostatic and breast cancers. Thus, CYP17A1 is a druggable target for anti-cancer molecule development. In this study, cheminformatic analyses and quantitative structure–activity relationship (QSAR) modeling were applied on a set of 962 CYP17A1 inhibitors (i.e., consisting of 279 steroidal and 683 nonsteroidal inhibitors) compiled from the ChEMBL database. For steroidal inhibitors, a QSAR classification model built using the PubChem fingerprint along with the extra trees algorithm achieved the best performance, reflected by the accuracy values of 0.933, 0.818, and 0.833 for the training, cross-validation, and test sets, respectively. For nonsteroidal inhibitors, a systematic cheminformatic analysis was applied for exploring the chemical space, Murcko scaffolds, and structure–activity relationships (SARs) for visualizing distributions, patterns, and representative scaffolds for drug discoveries. Furthermore, seven total QSAR classification models were established based on the nonsteroidal scaffolds, and two activity cliff (AC) generators were identified. The best performing model out of these seven was model VIII, which is built upon the PubChem fingerprint along with the random forest algorithm. It achieved a robust accuracy across the training set, the cross-validation set, and the test set, i.e., 0.96, 0.92, and 0.913, respectively. It is anticipated that the results presented herein would be instrumental for further CYP17A1 inhibitor drug discovery efforts.

Funder

Science, Technology and Innovation Commission of Shenzhen Municipality

Kobilka Institute of Innovative Drug Discovery

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3