Effect of Chitosan and Amphiphilic Polymers on the Photosensitizing and Spectral Properties of Rose Bengal

Author:

Kuryanova Anastasia S.,Savko Marina A.,Kaplin Vladislav S.,Aksenova Nadezhda A.ORCID,Timofeeva Victoria A.,Chernyak Aleksandr V.ORCID,Glagolev Nicolay N.,Timashev Petr S.ORCID,Solovieva Anna B.

Abstract

The influence of chitosan (CS) and amphiphilic polymers (AP: pluronic F108 and polyvinylpyrrolidone (PVP)) on the photocatalytic activity of rose bengal (RB) in a model reaction of tryptophan photo-oxidation in phosphate-buffered saline (PBS) was studied. It was shown that in the presence of CS, the effective rate constant keff of tryptophan photo-oxidation catalyzed by RB in PBS solution decreases by a factor of two. This is due to the ionic interaction of the RB with the chitosan. Rose bengal in a slightly acidic environment (pH 4.5) passes into a neutral lactone form, which sharply reduces the photosensitizing properties of the dye. It was demonstrated that the introduction of AP into a solution containing RB and CS prevents direct interaction between RB and CS. This is evidenced by the presence of photocatalytic activity of the dye in the RB-AP-CS systems, as well as bathochromic shifts of the main absorption bands of the dye, and an increase in the optical density and luminescence intensity of the RB when AP is introduced into a buffer solution containing RB and chitosan. The presence of RB-CS and RB-AP interaction in aqueous and PBS media is confirmed by the increase in the degree of fluorescence anisotropy (r) of these binary systems. In an aqueous solution, the value of r for the RB-F108-CS system decreases by a factor of 3.5 (compared to the value of r for the RB-CS system), which is associated with the localization of the dye in pluronic micelles. In PBS, the fluorescence anisotropy is practically the same for all systems, which is related to the stability of the dye structure in this medium. The presence of interaction between RB and AP in aqueous solutions was confirmed by the proton NMR method. In addition, the formation of RB-F108 macromolecular complexes, which form associates during solution concentration (in particular, during evaporation), was shown by AFM. Such RB-AP-CS systems may be promising for practical application in the treatment of local foci of infections by aPDT.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3