Real-Time Analysis of the Stability of Oil-In-Water Pickering Emulsion by Electrochemical Impedance Spectroscopy

Author:

Jiang Qiuyan,Sun Ning,Kumar Parveen,Li Qiuhong,Liu BoORCID,Li Aixiang,Wang Weiwei,Gao Zengli

Abstract

In this paper, electrical impedance spectroscopy (EIS) was applied to investigate the stability of oil-in-water (O/W) Pickering emulsions prepared with negatively charged silica nanoparticles in combination with a trace amount of redox switchable fluorescent molecules, ferrocene azine (FcA). Electrical impedance values of emulsions obtained at different emulsification speeds were estimated according to the frequency response data with frequencies ranging from 1 MHz to 1 Hz. The equivalent circuit model of toluene-in-water emulsion was established by the resistor (RO/W) and capacitor (CO/W) in parallel connection. Nyquist diagrams for the emulsions prepared by toluene and water were characterized by the formation of one semi-circle. The droplet size distribution is one of the important factors that affect the stability of the emulsion, except for the volume fraction of water and oil, the size of stabilizing particles, etc. The average particle size of the emulsion droplets decreased as the emulsification speed increased, indicating the higher stability of the emulsion. It was found that the fitted impedance value RO/W of the emulsion decreased with decreasing particle size prepared at different emulsification speeds and storage time by performing real-time EIS detection techniques. The results suggested that EIS could be used to characterize the stability of a toluene-in-water emulsion stabilized by FcA modified silica nanoparticles. Moreover, based on the good electrochemical activity of the FcA molecule, the stability of the Pickering emulsion can be modulated by adding oxidant and reductant and detected by EIS in real-time.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3