Electrochemical Properties of a Rhodium(III) Mono-Terpyridyl Complex and Use as a Catalyst for Light-Driven Hydrogen Evolution in Water

Author:

Camara Fakourou,Gavaggio Thomas,Dautreppe Baptiste,Chauvin Jérôme,Pécaut JacquesORCID,Aldakov DmitryORCID,Collomb Marie-NoëlleORCID,Fortage Jérôme

Abstract

Molecular hydrogen (H2) is considered one of the most promising fuels to decarbonize the industrial and transportation sectors, and its photocatalytic production from molecular catalysts is a research field that is still abounding. The search for new molecular catalysts for H2 production with simple and easily synthesized ligands is still ongoing, and the terpyridine ligand with its particular electronic and coordination properties, is a good candidate to design new catalysts meeting these requirements. Herein, we have isolated the new mono-terpyridyl rhodium complex, [RhIII(tpy)(CH3CN)Cl2](CF3SO3) (Rh-tpy), and shown that it can act as a catalyst for the light-induced proton reduction into H2 in water in the presence of the [Ru(bpy)3]Cl2 (Ru) photosensitizer and ascorbate as sacrificial electron donor. Under photocatalytic conditions, in acetate buffer at pH 4.5 with 0.1 M of ascorbate and 530 μM of Ru, the Rh-tpy catalyst produces H2 with turnover number versus catalyst (TONCat*) of 300 at a Rh concentration of 10 μM, and up to 1000 at a concentration of 1 μM. The photocatalytic performance of Ru/Rh-tpy/HA–/H2A has been also compared with that obtained with the bis-dimethyl-bipyridyl complex [RhIII(dmbpy)2Cl2]+ (Rh2) as a catalyst in the same experimental conditions. The investigation of the electrochemical properties of Rh-tpy in DMF solvent reveals that the two-electrons reduced state of the complex, the square-planar [RhI(tpy)Cl] (RhI-tpy), is quantitatively electrogenerated by bulk electrolysis. This complex is stable for hours under an inert atmosphere owing to the π-acceptor property of the terpyridine ligand that stabilizes the low oxidation states of the rhodium, making this catalyst less prone to degrade during photocatalysis. The π-acceptor property of terpyridine also confers to the Rh-tpy catalyst a moderately negative reduction potential (Epc(RhIII/RhI) = −0.83 V vs. SCE in DMF), making possible its reduction by the reduced state of Ru, [RuII(bpy)(bpy•−)]+ (Ru−) (E1/2(RuII/Ru−) = −1.50 V vs. SCE) generated by a reductive quenching of the Ru excited state (*Ru) by ascorbate during photocatalysis. A Stern–Volmer plot and transient absorption spectroscopy confirmed that the first step of the photocatalytic process is the reductive quenching of *Ru by ascorbate. The resulting reduced Ru species (Ru−) were then able to activate the RhIII-tpy H2-evolving catalyst by reduction generating RhI-tpy, which can react with a proton on a sub-nanosecond time scale to form a RhIII(H)-tpy hydride, the key intermediate for H2 evolution.

Funder

Labex ARCANE and CBH-EUR-GS

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3