Abstract
At the end of fermentation, wine contains approximately 20% (w/v) of solid material, known as grape marc (GM), produced at a yield of 2 t/ha. Cheese manufacture produces cheese whey (CW), which is over 80% of the processed milk, per unit volume. Both waste types represent an important fraction of the organic waste being disposed of by the wine and dairy industries. The objective of this study was to investigate the bioenergy potential through anaerobic codigestion of these waste streams. The best bioenergy profile was obtained from the digestion setups of mixing ratio 3/1 GM/CW (wet weight/wet weight). At this ratio, the inhibitory salinity of CW was sufficiently diluted, resulting in 23.73% conversion of the organic material to methane. On average, 64 days of steady bioenergy productivity was achieved, reaching a maximum of 85 ± 0.4% CH4 purity with a maximum cumulative methane yield of 24.4 ± 0.11 L CH4 kg−1 VS. During the fermentation there was 18.63% CODt removal, 21.18% reduction of conductivity whilst salinity rose by 36.19%. It can be concluded that wine and dairy industries could utilise these waste streams for enhanced treatment and energy recovery, thereby developing a circular economy.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献