Population and Energy Transfer Dynamics in an Open Excitonic Quantum Battery

Author:

Liu Zhe1,Hanna Gabriel1ORCID

Affiliation:

1. Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada

Abstract

In a previous study, we proposed an open quantum network model of a quantum battery (QB) that possesses dark states owing to its structural exchange symmetries. While in a dark state, the QB is capable of storing an exciton without any environment-induced population losses. However, when the structural exchange symmetry is broken, the QB begins to discharge the exciton towards its exit site. In this article, we start by demonstrating that this QB is not only loss-free with respect to exciton population during the storage phase, but also with respect to the QB energy. We then explore the exciton population and energy transfer dynamics of the QB during the discharge phase over a wide range of site energies, bath temperatures, and bath reorganization energies. Our results shed light on how to optimize the QB’s population and energy transfer dynamics for different purposes.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3