Impact of Formalin- and Cryofixation on Raman Spectra of Human Tissues and Strategies for Tumor Bank Inclusion

Author:

Mirizzi Giulia12,Jelke Finn123,Pilot Michel4,Klein Karoline2,Klamminger Gilbert Georg56ORCID,Gérardy Jean-Jacques67,Theodoropoulou Marily4,Mombaerts Laurent18,Husch Andreas8ORCID,Mittelbronn Michel36789ORCID,Hertel Frank12,Kleine Borgmann Felix Bruno2310ORCID

Affiliation:

1. National Department of Neurosurgery, Centre Hospitalier de Luxembourg (CHL), 1210 Luxembourg, Luxembourg

2. Saarland University Medical Center and Faculty of Medicine, 66421 Homburg, Germany

3. Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), 1445 Strassen, Luxembourg

4. Department of Medicine IV, LMU University Hospital, LMU Munich, 80539 Munich, Germany

5. Department of General and Special Pathology, Saarland University Medical Center (UKS), Saarland University (USAAR), 66424 Homburg, Germany

6. National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg

7. Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg

8. Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg (UL), 4365 Esch-sur-Alzette, Luxembourg

9. Department of Life Science and Medicine (DLSM), University of Luxembourg (UL), 4365 Esch-sur-Alzette, Luxembourg

10. Hôpitaux Robert Schuman, 2540 Luxembourg, Luxembourg

Abstract

Reliable training of Raman spectra-based tumor classifiers relies on a substantial sample pool. This study explores the impact of cryofixation (CF) and formalin fixation (FF) on Raman spectra using samples from surgery sites and a tumor bank. A robotic Raman spectrometer scans samples prior to the neuropathological analysis. CF samples showed no significant spectral deviations, appearance, or disappearance of peaks, but an intensity reduction during freezing and subsequent recovery during the thawing process. In contrast, FF induces sustained spectral alterations depending on molecular composition, albeit with good signal-to-noise ratio preservation. These observations are also reflected in the varying dual-class classifier performance, initially trained on native, unfixed samples: The Matthews correlation coefficient is 81.0% for CF and 58.6% for FF meningioma and dura mater. Training on spectral differences between original FF and pure formalin spectra substantially improves FF samples’ classifier performance (74.2%). CF is suitable for training global multiclass classifiers due to its consistent spectrum shape despite intensity reduction. FF introduces changes in peak relationships while preserving the signal-to-noise ratio, making it more suitable for dual-class classification, such as distinguishing between healthy and malignant tissues. Pure formalin spectrum subtraction represents a possible method for mathematical elimination of the FF influence. These findings enable retrospective analysis of processed samples, enhancing pathological work and expanding machine learning techniques.

Funder

Fondation Cancer, Luxembourg

Deutsche Forschungsgemeinschaft

Luxembourg National Research Fund

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3