Immunopharmacological Properties of Methacrylic Acid Polymers as Potential Polymeric Carrier Constituents of Anticancer Drugs

Author:

Zhukova Olga V.ORCID,Arkhipova Evgenia V.,Kovaleva Tatyana F.ORCID,Ryabov Sergey A.,Ivanova Irina. P.,Golovacheva Anna A.,Zykova Daria A.,Zaitsev Sergey D.

Abstract

Cytostatic chemotherapeutics provide a classical means to treat cancer, but conventional treatments have not increased in efficacy in the past years, warranting a search for new approaches to therapy. The aim of the study was, therefore, to obtain methacrylic acid (MAA) (co)polymers and to study their immunopharmacological properties. 4-Cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl] pentanoic acid (CDSPA) and 2-cyano-2-propyl dodecyl trithiocarbonate (CPDT) were used as reversible chain transfer agents. Experiments were carried out in Wistar rats. The MTT assay was used to evaluate the cytotoxic effect of the polymeric systems on peritoneal macrophages. An experimental tumor model was obtained by grafting RMK-1 breast cancer cells. Serum cytokine levels of tumor-bearing rats were analyzed. The chain transfer agents employed in classical radical polymerization substantially reduced the molecular weight of the resulting polymers, but a narrow molecular weight distribution was achieved only with CDSPA and high CPDT concentrations. Toxicity was not observed when incubating peritoneal macrophages with polymeric systems. In tumor-bearing rats, the IL-10 concentration was 1.7 times higher and the IL-17 concentration was less than half that of intact rats. Polymeric systems decreased the IL-10 concentration and normalized the IL-17 concentration in tumor-bearing rats. The maximum effect was observed for a MAA homopolymer with a high molecular weight. The anion-active polymers proposed as carrier constituents are promising for further studies and designs of carrier constituents of drug derivatives.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3