Effect of Different Catholytes on the Removal of Sulfate/Sulfide and Electricity Generation in Sulfide-Oxidizing Fuel Cell

Author:

Kieu Thi Quynh Hoa12,Nguyen Thi Yen1,Do Chi Linh3

Affiliation:

1. Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam

2. Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam

3. Institute of Material Sciences, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam

Abstract

Microbial fuel cells are one of the alternative methods that generate green, renewable sources of energy from wastewater. In this study, a new bio-electrochemical system called the sulfide-oxidizing fuel cell (SOFC) is developed for the simultaneous removal of sulfide/sulfide and electricity generation. To improve the application capacity of the SOFC, a system combining sulfate-reducing and sulfide-oxidizing processes for sulfate/sulfide removal and electricity generation was designed. Key factors influencing the sulfide-removal efficiency and electricity-generation capacity of the SOFC are the anolytes and catholytes. The sulfide produced from the sulfate-reducing process is thought to play the key role of an electron mediator (anolyte), which transfers electrons to the electrode to produce electricity. Sulfide can be removed in the anodic chamber of the SOFC when it is oxidized to the element sulfur (S°) through the biochemical reaction at the anode. The performance of wastewater treatment for sulfate/sulfide removal and electricity generation was evaluated by using different catholytes (dissolved oxygen in deionized water, a phosphate buffer, and ferricyanide). The results showed that the sulfate-removal efficiency is 92 ± 1.2% during a 95-day operation. A high sulfide-removal efficiency of 93.5 ± 1.2 and 83.7 ± 2% and power density of 18.5 ± 1.1 and 15.2 ± 1.2 mW/m2 were obtained with ferricyanide and phosphate buffers as the catholyte, respectively, which is about 2.6 and 2.1 times higher than dissolved oxygen being used as a catholyte, respectively. These results indicated that cathode electron acceptors have a direct effect on the performance of the treatment system. The sulfide-removal efficiency and power density of the phosphate buffer SOFC were only slightly less than the ferricyanide SOFC. Therefore, a phosphate buffer could serve as a low-cost and effective pH buffer for practical applications, especially for wastewater treatment. The results presented in this study clearly revealed that the integrated treatment system can be effectively applied for sulfate/sulfide removal and electricity generation simultaneously.

Funder

National Foundation for Science and Technology Development

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3