Magnesium(II) Porphyrazine with Thiophenylmethylene Groups-Synthesis, Electrochemical Characterization, UV–Visible Titration with Palladium Ions, and Density Functional Theory Calculations

Author:

Szczolko Wojciech1ORCID,Chornovolenko Kyrylo1,Kujawski Jacek2ORCID,Dutkiewicz Zbigniew1ORCID,Koczorowski Tomasz1ORCID

Affiliation:

1. Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland

2. Chair and Department of Organic Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland

Abstract

The presented studies aimed to evaluate the peripheral coordinating properties of a novel porphyrinoid family representative preceded by its synthesis for potential sensing purposes. Two synthetic pathways were employed to a obtain maleonitrile derivative, further used as a starting material in the cyclotetramerization reaction. In the first one, DAMN was used in sequential double-reductive alkylation with 2-thiophene-carboxyaldehyde and sodium borohydride. In the second, DAMN was used in a one-pot reaction with 2-thiophene-carboxyaldehyde in the presence of a 5-ethyl-2-methylpyridine borane complex in methanol and acetic acid. Following the Linstead approach, the cyclization reaction led to a novel symmetrical magnesium(II) octaaminoporphyrazine with methyl(2-thiophenylmethylene) substituents. The macrocycle’s electrochemical properties were assessed by cyclic and differential pulse voltammetries revealing one reduction and two oxidation peak potentials. The additional spectroelectrochemical measurements showed formation of a cationic form of the macrocycle at an applied potential of 0.6 V. The coordinating properties due to the palladium ion of novel porphyrazines were measured with the use of titration combined with UV–vis spectrometry. The titration of Pd2+ revealed the good sensing activity of porphyrazine in the range of 0.1 to 5 palladium molar equivalents. In addition, Pd2+ ions coordination was also assessed by electrochemical studies, indicating the peak potential shift of 0.1 V in the presence of metal cations. DFT calculations showed the good agreement between theoretical and experimental data in the UV–vis and 1H NMR studies.

Funder

Poznan University of Medical Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3