Affiliation:
1. CIRCE-Energy Resources and Consumption Technology Center, Parque Empresarial Dinamiza, Avda. Ranillas 3D, 1st Floor, 50018 Zaragoza, Spain
2. Thermochemical Processes Group (GPT), Aragon Institute of Engineering Research (I3A), Universidad de Zaragoza, Mariano Esquillor S/N, 50018 Zaragoza, Spain
Abstract
The aqueous-phase hydrogenolysis of glycerol was studied in Ni/CeO2 catalytic systems prepared by incipient wetness impregnation. The operating conditions were 34 bar, 227 ºC, 5 wt.% of glycerol, and a W/mglycerol = 20 g catalyst min/g glycerol without a hydrogen supply. The effect of the catalyst preparation conditions on the catalytic activity and physicochemical properties of the catalysts was assessed, particularly the calcination temperature of the support, the calcination temperature of the catalyst, and the Ni content. The physicochemical properties of the catalysts were determined by N2 adsorption, H2-TPR, NH3-TPD, and XRD, among other techniques. A relevant increase in acidity was observed when increasing the nickel content up to 20 wt.%. The increase in the calcination temperatures of the supports and catalysts showed a detrimental effect on the specific surface area and acid properties of the catalysts, which were crucial to the selectivity of the reaction. These catalysts notably enhanced the yield of liquid products, achieving global glycerol conversion values ranging from 17.1 to 29.0% and carbon yield to liquids ranging from 12.6 to 24.0%. Acetol and 1,2-propanediol were the most abundant products obtained in the liquid stream.