Synergistic Promotion of Photocatalytic Degradation of Methyl Orange by Fluorine- and Silicon-Doped TiO2/AC Composite Material

Author:

Zhu Jinyuan1,Zhu Yingying1ORCID,Zhou Yifan1,Wu Chen2,Chen Zhen1,Chen Geng1

Affiliation:

1. Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China

2. Ningbo Energy Group Co., Ltd., Ningbo 315000, China

Abstract

The direct or indirect discharge of organic pollutants causes serious environmental problems and endangers human health. The high electron–hole recombination rate greatly limits the catalytic efficiency of traditional TiO2-based catalysts. Therefore, starting from low-cost activated carbon (AC), a photocatalyst (F-Si-TiO2/AC) comprising fluorine (F)- and silicon (Si)-doped TiO2 loaded on AC has been developed. F-Si-TiO2/AC has a porous structure. TiO2 nanoparticles were uniformly fixed on the surface or pores of AC, producing many catalytic sites. The band gap of F-Si-TiO2/AC is only 2.7 eV. In addition, F-Si-TiO2/AC exhibits an excellent adsorption capacity toward methyl orange (MO) (57%) in the dark after 60 min. Under the optimal preparation conditions, F-Si-TiO2/AC showed a significant photodegradation performance toward MO, reaching 97.7% after irradiation with visible light for 70 min. Even under the action of different anions and cations, its degradation efficiency is the lowest, at 64.0%, which has good prospects for practical application. At the same time, F-Si-TiO2/AC has long-term, stable, practical application potential and can be easily recovered from the solution. Therefore, this work provides new insights for the fabrication of low-cost, porous, activated, carbon-based photocatalysts, which can be used as high-performance photocatalysts for the degradation of organic pollutants.

Funder

Ningbo Natural Science Foundation, China

Natural Science Foundation of Zhejiang Province, China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3