Functional Fragments of AIMP1-Derived Peptide (AdP) and Optimized Hydrosol for Their Topical Deposition by Box-Behnken Design

Author:

Lee Jeong-Jun,Han Young-Min,Kwon Tae-Wan,Kim Dong,Lee Han,Jung Woo,Kim JinaORCID,Kang Sujin,Kim Sang,Cho Cheong-WeonORCID,Lee Kyeong-RyoonORCID,Kim Dae-DukORCID,Park Min,Lee Jae-Young

Abstract

Aminoacyl-tRNA synthetase complex-interacting multifunctional protein 1 (AIMP1)-derived peptide (AdP) has been developed as a cosmeceutical ingredient for skin anti-aging given its fibroblast-activating (FA) and melanocyte-inhibiting (MI) functions. However, a suitable strategy for the topical delivery of AdP was required due to its low-permeable properties. In this study, FA and MI domains of AdP (FA-AdP and MI-AdP, respectively) were determined by functional domain mapping, where the activities of several fragments of AdP on fibroblast and melanocyte were tested, and a hydrosol-based topical delivery system for these AdP fragments was prepared. The excipient composition of the hydrosol was optimized to maximize the viscosity and drying rate by using Box-Behnken design. The artificial skin deposition of FA-AdP-loaded hydrosol was evaluated using Keshary-Chien diffusion cells equipped with Strat-M membrane (STM). The quantification of the fluorescent dye-tagged FA-AdP in STM was carried out by near-infrared fluorescence imaging. The optimized hydrosol showed 127-fold higher peptide deposition in STM than free FA-AdP (p < 0.05). This work suggests that FA- and MI-AdP are active-domains for anti-wrinkle and whitening activities, respectively, and the hydrosol could be used as a promising cosmetic formulation for the delivery of AdPs to the skin.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3