NMR-Based Metabolomics: A New Paradigm to Unravel Defense-Related Metabolites in Insect-Resistant Cotton Variety through Different Multivariate Data Analysis Approaches

Author:

Shami Anam Amin12,Akhtar Muhammad Tayyab2ORCID,Mumtaz Muhammad Waseem3,Mukhtar Hamid2ORCID,Tahir Amna4,Shahzad-ul-Hussan Syed5,Chaudhary Safee Ullah4ORCID,Muneer Bushra2,Iftikhar Hafsa5ORCID,Neophytou Marios6

Affiliation:

1. Department of Biotechnology, University of Central Punjab, Lahore 54000, Pakistan

2. Institute of Industrial Biotechnology, GC University Lahore, Lahore 54000, Pakistan

3. Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan

4. Biomedical Informatics and Engineering Research Laboratory, Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan

5. Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan

6. KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

Abstract

Cotton (Gossypium hirsutum) is an economically important crop and is widely cultivated around the globe. However, the major problem of cotton is its high vulnerability to biotic and abiotic stresses. It has been around three decades since the cotton plant was genetically engineered with genes encoding insecticidal proteins (mainly Cry proteins) with an aim to protect it against insect attack. Several studies have been reported on the impact of these genes on cotton production and fiber quality. However, the metabolites responsible for conferring resistance in genetically modified cotton need to be explored. The current work aims to unveil the key metabolites responsible for insect resistance in Bt cotton and also compare the conventional multivariate analysis methods with deep learning approaches to perform clustering analysis. We aim to unveil the marker compounds which are responsible for inducing insect resistance in cotton plants. For this purpose, we employed 1H-NMR spectroscopy to perform metabolite profiling of Bt and non-Bt cotton varieties, and a total of 42 different metabolites were identified in cotton plants. In cluster analysis, deep learning approaches (linear discriminant analysis (LDA) and neural networks) showed better separation among cotton varieties compared to conventional methods (principal component analysis (PCA) and orthogonal partial least square discriminant analysis (OPLSDA)). The key metabolites responsible for inter-class separation were terpinolene, α-ketoglutaric acid, aspartic acid, stigmasterol, fructose, maltose, arabinose, xylulose, cinnamic acid, malic acid, valine, nonanoic acid, citrulline, and shikimic acid. The metabolites which regulated differently with the level of significance p < 0.001 amongst different cotton varieties belonged to the tricarboxylic acid cycle (TCA), Shikimic acid, and phenylpropanoid pathways. Our analyses underscore a biosignature of metabolites that might involve in inducing insect resistance in Bt cotton. Moreover, novel evidence from our study could be used in the metabolic engineering of these biological pathways to improve the resilience of Bt cotton against insect/pest attacks. Lastly, our findings are also in complete support of employing deep machine learning algorithms as a useful tool in metabolomics studies.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3