Comparative Analysis of the Stability and Performance of Double-, Triple-, and Quadruple-Cation Perovskite Solar Cells for Rooftop and Indoor Applications

Author:

Dipta Shahriyar Safat1ORCID,Howlader Ashraful Hossain1ORCID,Tarique Walia Binte1ORCID,Uddin Ashraf1

Affiliation:

1. School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney 2052, Australia

Abstract

The solar energy market is predicted to be shared between Si solar cells and third-generation photovoltaics in the future. Perovskite solar cells (PSCs) show the greatest potential to capture a share there as a single junction or in tandem with silicon. Researchers worldwide are looking to optimize the composition of the perovskite film to achieve an optimal bandgap, performance, and stability. Traditional perovskites have a mixture of formamidinium and methyl ammonium as the A-site cation in their ABX3 structure. However, in recent times, the use of cesium and rubidium has become popular for making highly efficient PSCs. A thorough analysis of the performance and stability of double-, triple-, and quadruple-cation PSCs under different environmental conditions was performed in this study. The performance of the device and the films was analyzed by electrical measurements (J–V, dark J–V, EQE), scanning electron microscopy, atomic force microscopy, photoluminescence, and X-ray diffraction. The quadruple-cation device with the formula Cs0.07Rb0.03FA0.77MA0.13PbI2.8Br0.2 showed the highest power conversion efficiency (PCE) of 21.7%. However, this device had the least stability under all conditions. The triple-cation device with the formula Cs0.1FA0.6MA0.3PbI2.8Br0.2, with a slightly lower PCE (21.2%), was considerably more stable, resulting in about 30% more energy harvested than that using the other two devices during their life cycle.

Publisher

MDPI AG

Reference41 articles.

1. When will fossil fuel reserves be diminished?;Shafiee;Energy Policy,2009

2. Unburnable fossil-fuel reserves;Jakob;Nature,2015

3. Solar energy for future world—A review;Kannan;Renew. Sustain. Energy Rev.,2016

4. Solar energy—A look into power generation, challenges, and a solar-powered future;Hayat;Int. J. Energy Res.,2019

5. Solar energy: Trends and enabling technologies;Devabhaktuni;Renew. Sustain. Energy Rev.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3