Optimization of 1,4-Naphthoquinone Hit Compound: A Computational, Phenotypic, and In Vivo Screening against Trypanosoma cruzi

Author:

Lara Leonardo S.ORCID,Lechuga Guilherme C.,Moreira Caroline dos S.,Santos Thaís B.,Ferreira Vitor F.ORCID,da Rocha David R.ORCID,Pereira Mirian C. S.ORCID

Abstract

Chagas disease (CD) still represents a serious public health problem in Latin America, even after more than 100 years of its discovery. Clinical treatments (nifurtimox and benznidazole) are considered inadequate, especially because of undesirable side effects and low efficacy in the chronic stages of the disease, highlighting the urgency for discovering new effective and safe drugs. A small library of compounds (1a–i and 2a–j) was designed based on the structural optimization of a Hit compound derived from 1,4-naphthoquinones (C2) previously identified. The biological activity, structure-activity relationship (SAR), and the in silico physicochemical profiles of the naphthoquinone derivatives were analyzed. Most modifications resulted in increased trypanocidal activity but some substitutions also increased toxicity. The data reinforce the importance of the chlorine atom in the thiophenol benzene ring for trypanocidal activity, highlighting 1g, which exhibit a drug-likeness profile, as a promising compound against Trypanosoma cruzi. SAR analysis also revealed 1g as cliff generator in the structure-activity similarity map (SAS maps). However, compounds C2 and 1g were unable to reduce parasite load, and did not prevent mouse mortality in T. cruzi acute infection. Phenotypic screening and computational analysis have provided relevant information to advance the optimization and design of new 1,4-naphthoquinone derivatives with a better pharmacological profile.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference47 articles.

1. Targets and Milestones for Overcoming Neglected Tropical Diseases 2011–2020 https://www.who.int/chagas/strategy/en/

2. Drug for Neglected Disease Initiative (DNDi), Paediatric Benznidazole https://www.dndi.org/achievements/paediatric-benznidazole/

3. Untangling the transmission dynamics of primary and secondary vectors of Trypanosoma cruzi in Colombia: parasite infection, feeding sources and discrete typing units

4. Description of an oral Chagas disease outbreak in Venezuela, including a vertically transmitted case

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3