Docking-Based Evidence for the Potential of ImmunoDefender: A Novel Formulated Essential Oil Blend Incorporating Synergistic Antiviral Bioactive Compounds as Promising Mpro Inhibitors against SARS-CoV-2

Author:

Ksouri Ayoub1ORCID,Klouz Anis2,Bouhaouala-Zahar Balkiss12ORCID,Moussa Fathi3,Bezzarga Mounir45

Affiliation:

1. Laboratoire des Biomolécules, Venins et Applications Théranostiques, Institut Pasteur de Tunis, Université Tunis El Manar, 13 Place Pasteur, BP74, Tunis 1002, Tunisia

2. Faculté de Médecine de Tunis, Université Tunis El Manar, 15 Rue Djebel Lakhdhar, La Rabta, Tunis 1007, Tunisia

3. Institute of Physical Chemistry, CNRS—UMR 8000, University Paris—Saclay, Rue Noetzlin, 91190 Gif-sur-Yvette, France

4. Laboratoire de Modélisation Mathématique, Faculté des Sciences de Tunis, Université Tunis El Manar, Analyse Harmonique et Théorie du Potentiel, Campus Universitaire, Tunis 1068, Tunisia

5. Institut Préparatoire aux Etudes d’Ingénieurs de Tunis, Université de Tunis, Tunis 1068, Tunisia

Abstract

Essential oils (Eos) have demonstrated antiviral activity, but their toxicity can hinder their use as therapeutic agents. Recently, some essential oil components have been used within safe levels of acceptable daily intake limits without causing toxicity. The “ImmunoDefender,” a novel antiviral compound made from a well-known mixture of essential oils, is considered highly effective in treating SARS-CoV-2 infections. The components and doses were chosen based on existing information about their structure and toxicity. Blocking the main protease (Mpro) of SARS-CoV-2 with high affinity and capacity is critical for inhibiting the virus’s pathogenesis and transmission. In silico studies were conducted to examine the molecular interactions between the main essential oil components in “ImmunoDefender” and SARS-CoV-2 Mpro. The screening results showed that six key components of ImmunoDefender formed stable complexes with Mpro via its active catalytic site with binding energies ranging from −8.75 to −10.30 kcal/mol, respectively for Cinnamtannin B1, Cinnamtannin B2, Pavetannin C1, Syzyginin B, Procyanidin C1, and Tenuifolin. Furthermore, three essential oil bioactive inhibitors, Cinnamtannin B1, Cinnamtannin B2, and Pavetannin C, had significant ability to bind to the allosteric site of the main protease with binding energies of −11.12, −10.74, and −10.79 kcal/mol; these results suggest that these essential oil bioactive compounds may play a role in preventing the attachment of the translated polyprotein to Mpro, inhibiting the virus’s pathogenesis and transmission. These components also had drug-like characteristics similar to approved and effective drugs, suggesting that further pre-clinical and clinical studies are needed to confirm the generated in silico outcomes.

Funder

BIODEX-SA company

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference63 articles.

1. World Health Organization (2020). Clinical Management of COVID-19: Interim Guidance, 27 May 2020.

2. Public Health England (2020). Investigation of Novel SARS-CoV-2 Variant, Variant of Concern 202012/01 Technical Briefing 2–28 December 2020.

3. Bioactive natural products in COVID-19 therapy;Wang;Front. Pharmacol.,2022

4. Recognition of natural products as potential inhibitors of COVID-19 main protease (Mpro): In-silico evidences;Narkhede;Nat. Prod. Bioprospect.,2020

5. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein;Walls;Cell,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3