Toll-like Receptor 4 Inflammatory Perspective on Doxorubicin-Induced Cardiotoxicity

Author:

Sumneang Natticha12ORCID,Tanajak Pongpan3ORCID,Oo Thura Tun4ORCID

Affiliation:

1. Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand

2. Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand

3. Department of Physical Therapy, Rehabilitation Center, Apinop Wetchakam Hospital, Kaeng-Khoi District, Saraburi 18110, Thailand

4. Department of Biomedical Sciences, University of Illinois at Chicago, College of Medicine Rockford, Rockford, IL 61107, USA

Abstract

Doxorubicin (Dox) is one of the most frequently used chemotherapeutic drugs in a variety of cancers, but Dox-induced cardiotoxicity diminishes its therapeutic efficacy. The underlying mechanisms of Dox-induced cardiotoxicity are still not fully understood. More significantly, there are no established therapeutic guidelines for Dox-induced cardiotoxicity. To date, Dox-induced cardiac inflammation is widely considered as one of the underlying mechanisms involved in Dox-induced cardiotoxicity. The Toll-like receptor 4 (TLR4) signaling pathway plays a key role in Dox-induced cardiac inflammation, and growing evidence reports that TLR4-induced cardiac inflammation is strongly linked to Dox-induced cardiotoxicity. In this review, we outline and address all the available evidence demonstrating the involvement of the TLR4 signaling pathway in different models of Dox-induced cardiotoxicity. This review also discusses the effect of the TLR4 signaling pathway on Dox-induced cardiotoxicity. Understanding the role of the TLR4 signaling pathway in Dox-induced cardiac inflammation might be beneficial for developing a potential therapeutic strategy for Dox-induced cardiotoxicity.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference55 articles.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3