Surface Modification of Magnetic Nanoparticles by Carbon-Coating Can Increase Its Biosafety: Evidences from Biochemical and Neurobehavioral Tests in Zebrafish

Author:

Malhotra Nemi,Audira Gilbert,Chen Jung-Ren,Siregar Petrus,Hsu Hua-Shu,Lee Jiann-Shing,Ger Tzong-Rong,Hsiao Chung-DerORCID

Abstract

Recently, magnetic nanoparticles (MNPs) have gained much attention in the field of biomedical engineering for therapeutic as well as diagnostic purposes. Carbon magnetic nanoparticles (C-MNPs) are a class of MNPs categorized as organic nanoparticles. C-MNPs have been under considerable interest in studying in various applications such as magnetic resonance imaging, photothermal therapy, and intracellular transportof drugs. Research work is still largely in progress for testing the efficacy of C-MNPs on the theranostics platform in cellular studies and animal models. In this study, we evaluated the neurobehavioral toxicity parameters on the adult zebrafish (Danio rerio) at either low (1 ppm) or high (10 ppm) concentration level of C-MNPs over a period of two weeks by waterborne exposure. The physical properties of the synthesized C-MNPs were characterized by transmission electron microscopy, Raman, and XRD spectrum characterization. Multiple behavior tests for the novel tank, mirror biting, predator avoidance, conspecific social interaction, shoaling, and analysis of biochemical markers were also conducted to elucidate the corresponding mechanism. Our data demonstrate the waterborne exposure of C-MNPs is less toxic than the uncoated MNPs since neither low nor high concentration C-MNPs elicit toxicity response in behavioral and biochemical tests in adult zebrafish. The approach combining biochemical and neurobehavioral approaches would be helpful for understanding C-MNPs association affecting the bioavailability, biosafety, interaction, and uptake of these C-MNPs in the living organism.

Funder

Ministry of Science Technology, Taiwan

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3