Waste Cooking Oil-Modified Epoxy Asphalt Rubber Binders with Improved Compatibility and Extended Allowable Construction Time

Author:

Gong Jie,Jing Fan,Zhao Ruikang,Li Chenxuan,Cai Jun,Wang Qingjun,Xie HongfengORCID

Abstract

The application of crumb rubber from end-of-life tires and waste cooking oil (WCO) in road pavements is of significant importance from an economic and environmental viewpoint. However, the incorporation of crumb rubber greatly shortens the allowable construction time of epoxy asphalt binders due to the high viscosity of the epoxy asphalt rubber (EAR) binder and poor compatibility between crumb rubber and asphalt binder. To lower the viscosity of asphalt rubber, extend the allowable construction time and improve the compatibility of EAR binder, waste cooking oil (WCO) was introduced. The effect of WCO on the viscosity–time behavior, thermal stability, dynamic modulus, glass transitions, crosslink density, damping ability, compatibility, mechanical properties and phase separation of WCO-modified EAR binders was investigated by using the Brookfield viscometer, thermogravimetric analysis, dynamic mechanical analysis, universal testing machine and laser confocal microscopy. The test results demonstrated that the incorporation of WCO declined the viscosity and extended the allowable construction time of the unmodified EAR binder. The inclusion of WCO improved the compatibility between asphalt and crumb rubber and the damping ability and elongation at the break of the unmodified EAR binder. The presence of WCO had a marginal effect on the thermal stability of the unmodified EAR binder. Confocal microscopy observation revealed that asphalt rubber particles aggregated in the epoxy phase of the unmodified EAR binder. With the inclusion of WCO, co-continuous asphalt rubber particles became more spherical.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3