Coronavirus Inhibitors Targeting nsp16

Author:

Omer Ejlal A.1,Abdelfatah Sara1ORCID,Riedl Max2,Meesters Christian3ORCID,Hildebrandt Andreas4ORCID,Efferth Thomas1ORCID

Affiliation:

1. Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany

2. Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, 04107 Leipzig, Germany

3. High Performance Computing Group, University of Mainz, 55131 Mainz, Germany

4. Institute for Computer Science, University of Mainz, 55131 Mainz, Germany

Abstract

During the past three decades, humans have been confronted with different new coronavirus outbreaks. Since the end of the year 2019, COVID-19 threatens the world as a rapidly spreading infectious disease. For this work, we targeted the non-structural protein 16 (nsp16) as a key protein of SARS-CoV-2, SARS-CoV-1 and MERS-CoV to develop broad-spectrum inhibitors of nsp16. Computational methods were used to filter candidates from a natural product-based library of 224,205 compounds obtained from the ZINC database. The binding of the candidates to nsp16 was assessed using virtual screening with VINA LC, and molecular docking with AutoDock 4.2.6. The top 9 compounds were bound to the nsp16 protein of SARS-CoV-2, SARS-CoV-1, and MERS-CoV with the lowest binding energies (LBEs) in the range of −9.0 to −13.0 kcal with VINA LC. The AutoDock-based LBEs for nsp16 of SARS-CoV-2 ranged from −11.42 to −16.11 kcal/mol with predicted inhibition constants (pKi) from 0.002 to 4.51 nM, the natural substrate S-adenosyl methionine (SAM) was used as control. In silico results were verified by microscale thermophoresis as in vitro assay. The candidates were investigated further for their cytotoxicity in normal MRC-5 lung fibroblasts to determine their therapeutic indices. Here, the IC50 values of all three compounds were >10 µM. In summary, we identified three novel SARS-CoV-2 inhibitors, two of which showed broad-spectrum activity to nsp16 in SARS-CoV-2, SARS-CoV-1, and MERS-CoV. All three compounds are coumarin derivatives that contain chromen-2-one in their scaffolds.

Funder

Marc Strobel

CVC Capital Partners

Frankfurt a. M.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3