Synthesis of Silver Nanoparticles by Leaf Extract of Cucumis melo L. and Their In Vitro Antidiabetic and Anticoccidial Activities

Author:

Rani Pushpa1,Kumar Naveen1,Perinmbam Kantharaj2,Devanesan Sandhanasamy3,AlSalhi Mohamad S.3ORCID,Asemi Nassar3ORCID,Nicoletti Marcello4

Affiliation:

1. Department of Advanced Zoology and Biotechnology, Loyola College, Chennai 600034, Tamil Nadu, India

2. PG and Research Department of Botany, Government Arts College for Men (Autonomous), Affiliated to University of Madras, Nandanam, Chennai 600035, Tamil Nadu, India

3. Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

4. Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy

Abstract

In this study, silver nanoparticles were synthesized using Cucumis melo L. leaf extract via a green synthesis approach and their potential against diabetes and coccidiosis was tested under in vitro conditions. The phytochemical components in the leaf extract reacted with silver nitrate in solution and yielded C. melo-silver nanoparticles (Cm-AgNPs). The synthesis of AgNPs was confirmed via UV–visible spectroscopy by obtaining a peak at 440 nm. The nanoparticles were characterized by their morphology, crystallinity, and the presence of functional groups. In vitro α-amylase and α-glucosidase inhibition assays were carried out at different concentrations in the range of 20 to 100 μg/mL of Cm-AgNPs. The Cm-AgNPs exhibited enzyme inhibitory activity in a concentration-dependent manner. As the concentration of Cm-AgNPs increased the inhibitory activities were also increased linearly and the highest inhibition was observed at 100 μg/mL. The effectiveness of Cm-AgNPs against Eimeria tenalla was assessed by an in vitro 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay using Madin–Darby bovine kidney (MDBK) cell lines. The results revealed that the viability of the oocysts and further sporulation were decreased with the increased concentration of Cm-AgNPs. The AgNPs synthesized from the C. melo leaf extract have shown promising potential against diabetes and coccidiosis, and they could be used in biomedical applications.

Funder

King Saud University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3