Novel Carbon/PEDOT/PSS-Based Screen-Printed Biosensors for Acetylcholine Neurotransmitter and Acetylcholinesterase Detection in Human Serum

Author:

Ashmawy ,Almehizia ORCID,Youssef ,El-Galil E. Amr ORCID,Al-Omar ORCID,Kamel ORCID

Abstract

New reliable and robust potentiometric ion-selective electrodes were fabricated using poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) as the solid contact between the sensing membrane and electrical substrate for an acetylcholine (ACh) bioassay. A film of PEDOT/PSS was deposited on a solid carbon screen-printed platform made from ceramic substrate. The selective materials used in the ion-selective electrode (ISE) sensor membrane were acetylcholinium tetraphenylborate (ACh/TPB/PEDOT/PSS-ISE) (sensor I) and triacetyl-β-cyclodextrin (β-CD/PEDOT/PSS-ISE) (sensor II). The sensors revealed clear enhanced Nernstian response with a cationic slope 56.4 ± 0.6 and 55.3 ± 1.1 mV/decade toward (ACh+) ions over the dynamic linear range 1.0 × 10−6–1 × 10−3 and 2.0 × 10−6–1.0 × 10−3 M at pH 5 with limits of detection 2.0 × 10−7 and 3.2 × 10−7 M for sensors I and II, respectively. The selectivity behavior of both sensors was also tested and the sensors showed a significant high selectivity toward ACh+ over different common organic and inorganic cations. The stability of the potential response for the solid-contact (SC)/ISEs was evaluated using a chronopotentiometric method and compared with that of electrodes prepared without adding the solid-contact material (PEDOT/PSS). Enhanced accuracy, excellent repeatability, good reproducibility, potential stability, and high selectivity and sensitivity were introduced by these cost-effective sensors. The sensors were also used to measure the activity of acetylcholinesterase (AChE). A linear plot between the initial rate of the hydrolysis of ACh+ substrate and enzyme activity held 5.0 × 10−3–5.2 IU∙L−1 of AChE enzyme. Application to acetylcholine determination in human serum was done and the results were compared with the standard colorimetric method.

Funder

king Saud University,

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference42 articles.

1. Conducting polymer-based electrochemical biosensors for neurotransmitters: A review

2. Neurotransmitter modulation by the gut microbiota

3. Cholinergic Neurons, Pathways, Diseases;Mesulam,1987

4. Determination of acetylcholine in human blood

5. Drug-Induced Ocular Side Effects and Drug Interactions;Fraunfelder,1982

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3