Tuning the Electrochemical Properties of Novel Asymmetric Integral Sulfonated Polysulfone Cation Exchange Membranes

Author:

Avci Ahmet HalilORCID,Van Goethem CédricORCID,Rijnaarts Timon,Santoro SergioORCID,Aquino Marco,Di Profio GianlucaORCID,Vankelecom Ivo F. J.ORCID,De Vos Wiebe M.ORCID,Fontananova EnricaORCID,Curcio Efrem

Abstract

In this study, novel asymmetric integral cation exchange membranes were prepared by the wet phase inversion of sulfonated polysulfone (SPSf) solutions. SPSf with different degrees of sulfonation (DS) was synthesized by variation in the amount of chlorosulfonic acid utilized as a sulfonating agent. The characterization of SPSf samples was performed using FTIR and 1H-NMR techniques. SPSf with a DS of 0.31 (0.67 meq/g corresponding ion exchange capacity) was chosen to prepare the membranes, as polymers with a higher DS resulted in poor mechanical properties and excessive swelling in water. By a systematic study, the opportunity to tune the properties of SPSf membranes by acting on the composition of the polymeric solution was demonstrated. The effect of two different phase inversion parameters, solvent type and co-solvent ratio, were investigated by morphological and electrochemical characterization. The best properties (permselectivity of 0.86 and electrical resistance of 6.3 Ω∙cm2) were obtained for the membrane prepared with 2-propanol (IPA):1-Methyl-2-pyrrolidinone (NMP) in a 20:80 ratio. This membrane was further characterized in different solution concentrations to estimate its performance in a Reverse Electrodialysis (RED) operation. Although the estimated generated power was less than that of the commercial CMX (Neosepta) membrane, used as a benchmark, the tailor-made membrane can be considered as a cost-effective alternative, as one of the main limitations to the commercialization of RED is the high membrane price.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3