Author:
Shimizu Yoichi,Tanimura Keiichi,Iikuni Shimpei,Watanabe Hiroyuki,Saji Hideo,Ono Masahiro
Abstract
Hyperlipidemia causes systemic lipid disorder, which leads to hepatic steatosis and atherosclerosis. Thus, it is necessary to detect these syndromes early and precisely to improve prognosis. In the affected regions, abnormal formation and growth of lipid droplets is observed; therefore, lipid droplets may be a suitable target for the diagnosis of hyperlipidemia-related syndromes. In this study, we designed and synthesized [99mTc]Tc-BOD and [99mTc]Tc-MBOD composed of one technetium-99m and two BODIPY scaffolds with hydroxamamide (Ham) or N-methylated hydroxamamide (MHam) in radiochemical yields of 54 and 35%, respectively, with a radiochemical purity of over 95%. [99mTc]Tc-BOD showed significantly higher accumulation levels in foam cells than in non-foam cells (foam cells: 213.8 ± 64.8, non-foam cell: 126.2 ± 26.9 %dose/mg protein, p < 0.05) 2 h after incubation. In contrast, [99mTc]Tc-MBOD showed similar accumulation levels in foam cells and non-foam cells (foam cells: 92.2 ± 23.3, non-foam cell: 83.8 ± 19.8 %dose/mg protein). In normal mice, [99mTc]Tc-BOD exhibited gradual blood clearance (0.5 h: 4.98 ± 0.35, 6 h: 1.94 ± 0.12 %ID/g) and relatively high accumulation in the liver 6 h after administration (15.22 ± 1.72 %ID/g). Therefore, [99mTc]Tc-BOD may have potential as an imaging probe for detecting lipid droplets in disease lesions of hyperlipidemia.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献