Heterologous Machine Learning for the Identification of Antimicrobial Activity in Human-Targeted Drugs

Author:

Nava Lara Rodrigo,Aguilera-Mendoza Longendri,Brizuela Carlos,Peña Antonio,Del Rio Gabriel

Abstract

The emergence of microbes resistant to common antibiotics represent a current treat to human health. It has been recently recognized that non-antibiotic labeled drugs may promote antibiotic-resistance mechanisms in the human microbiome by presenting a secondary antibiotic activity; hence, the development of computer-assisted procedures to identify antibiotic activity in human-targeted compounds may assist in preventing the emergence of resistant microbes. In this regard, it is worth noting that while most antibiotics used to treat human infectious diseases are non-peptidic compounds, most known antimicrobials nowadays are peptides, therefore all computer-based models aimed to predict antimicrobials either use small datasets of non-peptidic compounds rendering predictions with poor reliability or they predict antimicrobial peptides that are not currently used in humans. Here we report a machine-learning-based approach trained to identify gut antimicrobial compounds; a unique aspect of our model is the use of heterologous training sets, in which peptide and non-peptide antimicrobial compounds were used to increase the size of the training data set. Our results show that combining peptide and non-peptide antimicrobial compounds rendered the best classification of gut antimicrobial compounds. Furthermore, this classification model was tested on the latest human-approved drugs expecting to identify antibiotics with broad-spectrum activity and our results show that the model rendered predictions consistent with current knowledge about broad-spectrum antibiotics. Therefore, heterologous machine learning rendered an efficient computational approach to classify antimicrobial compounds.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3