Assessment of Biodegradation Efficiency of Polychlorinated Biphenyls (PCBs) and Petroleum Hydrocarbons (TPH) in Soil Using Three Individual Bacterial Strains and Their Mixed Culture

Author:

Steliga TeresaORCID,Wojtowicz KatarzynaORCID,Kapusta PiotrORCID,Brzeszcz JoannaORCID

Abstract

Biodegradation is one of the most effective and profitable methods for the elimination of toxic polychlorinated biphenyls (PCBs) and total petroleum hydrocarbons (TPH) from the environment. In this study, aerobic degradation of the mentioned pollutants by bacterial strains Mycolicibacterium frederiksbergense IN53, Rhodococcus erythropolis IN129, and Rhodococcus sp. IN306 and mixed culture M1 developed based on those strains at 1:1:1 ratio was analyzed. The effectiveness of individual strains and of the mixed culture was assessed based on carried out respirometric tests and chromatographic analyses. The Rhodococcus sp. IN306 turned out most effective in terms of 18 PCB congeners biodegradation (54.4%). The biodegradation index was decreasing with an increasing number of chlorine atoms in a molecule. Instead, the Mycolicobacterium frederiksbergense IN53 was the best TPH degrader (37.2%). In a sterile soil, contaminated with PCBs and TPH, the highest biodegradation effectiveness was obtained using inoculation with mixed culture M1, which allowed to reduce both the PCBs (51.8%) and TPH (34.6%) content. The PCBs and TPH biodegradation capacity of the defined mixed culture M1 was verified ex-situ with prism method in a non-sterile soil polluted with aged petroleum hydrocarbons (TPH) and spent transformer oil (PCBs). After inoculation with mixed culture M1, the PCBs were reduced during 6 months by 84.5% and TPH by 70.8% as well as soil toxicity was decreased.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3