Synthesis of Deuterium-Labeled Vitamin D Metabolites as Internal Standards for LC-MS Analysis

Author:

Nagata Akiko,Iijima Kazuto,Sakamoto Ryota,Mizumoto Yuka,Iwaki Miho,Takiwaki Masaki,Kikutani Yoshikuni,Fukuzawa Seketsu,Odagi MinamiORCID,Tera Masayuki,Nagasawa KazuoORCID

Abstract

Blood levels of the vitamin D3 (D3) metabolites 25-hydroxyvitamin D3 (25(OH)D3), 24R,25-dihydroxyvitamin D3, and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) are recognized indicators for the diagnosis of bone metabolism-related diseases, D3 deficiency-related diseases, and hypercalcemia, and are generally measured by liquid-chromatography tandem mass spectrometry (LC-MS/MS) using an isotope dilution method. However, other D3 metabolites, such as 20-hydroxyvitamin D3 and lactone D3, also show interesting biological activities and stable isotope-labeled derivatives are required for LC-MS/MS analysis of their concentrations in serum. Here, we describe a versatile synthesis of deuterium-labeled D3 metabolites using A-ring synthons containing three deuterium atoms. Deuterium-labeled 25(OH)D3 (2), 25(OH)D3-23,26-lactone (6), and 1,25(OH)2D3-23,26-lactone (7) were synthesized, and successfully applied as internal standards for the measurement of these compounds in pooled human serum. This is the first quantification of 1,25(OH)2D3-23,26-lactone (7) in human serum.

Funder

Japan Agency for Medical Research and Development

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference37 articles.

1. Regulation of intestinal calcium and phosphate absorption;Fleet,2018

2. FGF23/Klotho new regulators of vitamin D metabolism;David,2011

3. Relative Value of 25(OH)D and 1,25(OH)2D Measurements

4. Vitamin D Status: Measurement, Interpretation, and Clinical Application

5. 20,23-dihydroxyvitamin D3, novel P450scc product, stimulates differentiation and inhibits proliferation and NF-kB activity in human keratinocytes;Janjetovic;J. Cell. Physiol.,2010

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3