Ruthenium p-Cymene Complexes Incorporating Substituted Pyridine–Quinoline-Based Ligands: Synthesis, Characterization, and Cytotoxic Properties

Author:

Kokkosi Afroditi1,Garofallidou Elpida1,Zacharopoulos Nikolaos1ORCID,Tsoureas Nikolaos1ORCID,Diamanti Konstantina2ORCID,Thomaidis Nikolaos S.2ORCID,Cheilari Antigoni3ORCID,Machalia Christina4,Emmanouilidou Evangelia4ORCID,Philippopoulos Athanassios I.1ORCID

Affiliation:

1. Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece

2. Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece

3. Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece

4. Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece

Abstract

Organometallic complexes of the formula [Ru(N^N)(p-cymene)Cl][X] (N^N = bidentate polypyridyl ligands, p-cymene = 1-methyl-4-(1-methylethyl)-benzene, X = counter anion), are currently studied as possible candidates for the potential treatment of cancer. Searching for new organometallic compounds with good to moderate cytotoxic activities, a series of mononuclear water-soluble ruthenium(II)–arene complexes incorporating substituted pyridine–quinoline ligands, with pending -CH2OH, -CO2H and -CO2Me groups in the 4-position of quinoline ring, were synthesized, for the first time, to study their possible effect to modulate the activity of the ruthenium p-cymene complexes. These include the [Ru(η6-p-cymene)(pqhyme)Cl][X] (X = Cl− (1-Cl), PF6− (1-PF6), pqhyme = 4-hydroxymethyl-2-(pyridin-2-yl)quinoline), [Ru(η6-p-cymene)(pqca)Cl][Cl] ((2-Cl), pqca = 4-carboxy-2-(pyridin-2-yl)quinoline), and [Ru(η6-p-cymene)(pqcame)Cl][X] (X = Cl− (3-Cl), PF6− (3-PF6), pqcame = 4-carboxymethyl-2-(pyridin-2-yl)quinoline) complexes, respectively. Identification of the complexes was based on multinuclear NMR and ATR-IR spectroscopic methods, elemental analysis, conductivity measurements, UV–Vis spectroscopic, and ESI-HRMS techniques. The solid-state structures of 1-PF6 and 3-PF6 have been elucidated by single-crystal X-ray diffraction revealing a three-legged piano stool geometry. This is the first time that the in vitro cytotoxic activities of these complexes are studied. These were conducted in HEK293T (human embryonic kidney cells) and HeLa cells (cervical cancer cells) via the MTT assay. The results show poor in vitro anticancer activities for the HeLa cancer cell lines and 3-Cl proved to be the most potent (IC50 > 80 μΜ). In both cell lines, the cytotoxicity of the ligand precursor pqhyme is significantly higher than that of cisplatin.

Funder

The Special Research Account of the National and Kapodistrian University of Athens

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3